Code: EC3T1

II B.Tech - I Semester – Regular/Supplementary Examinations November - 2018

ENGINEERING MATHEMATICS - III (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Prove that $(1 + \Delta)(1 \nabla) = 1$.
- b) State Gauss backward formula for interpolation.
- c) Explain Taylor series method for solving

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0 .$$

d) Using Picard's method of successive approximation obtain a

solution up to 2^{nd} approximation of the equation $\frac{dy}{dx} = x + 2y$ and y(0)=1.

- e) Write the Cauchy-Riemann equations.
- f) Show that $u = e^x \cos y$ is harmonic.
- g) Determine whether the function $2xy + i(x^2 y^2)$ is analytic.

h) Evaluate
$$\oint_{c} \frac{e^{2z}}{z-1} dz$$
 where *c* is the circle $|z| = 2$.

- i) Find the poles and their residues of $f(z) = \frac{1-e^{z}}{z^{3}}$.
- j) Define Bilinear transformation.
- k) Evaluate by residue theorem $\oint_c \frac{z^2 + 4}{z 3} dz$ where *c* is the circle |z| = 5.

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

- 2. a) Using Newton-Raphson's method find a real root of the equation $f(x) = 3x \cos x 1$ correct to four decimal places. 8 M
 - b) Using Lagrange's interpolation formula, find the value of *y* when *x*=30 from the table below.8 M

x	20	22	29	32
у	24.37	49.28	162.86	240.50

3. a) Solve $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 by Modified Euler's method to find y(0.2). 8 M b) Using Runge- Kutta method of fourth order, solve

$$\frac{dy}{dx} = x + y^2 \text{ with } y(0) = 1 \text{ at } x = 0.1, 0.2.$$
 8 M

4. a) If f(z) is a regular function, prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left| f(z) \right|^2 = 4 \left| f'(z) \right|^2$$
 8 M

b) Find an analytic function whose real part is $e^{-x}(x \sin y - y \cos y)$ 8 M

5. a) Evaluate
$$\oint_c \frac{\cos \pi z^2}{(z-1)(z-2)^3} dz$$
, where C is $|z| = 3$ by using
Cauchy integral formula. 8 M

- b) Expand $f(z) = \frac{z^2 1}{z^2 + 5z + 6}$ as Laurent's series about z = 0in the regions 2 < |z| < 3. 8 M
- 6. a) Using calculus of Residues evaluate $\int_{0}^{\pi} \frac{d\theta}{5 + 4\cos\theta} = 8 \text{ M}$
 - b) Find the bilinear transformation which maps the points z = 1, i, -i onto the points w = i, 0, -i 8 M